API
Contour
Cim.AbstractContour — Typecontours that we plan to support: 1. ellipse 2. circle 3. rectangle (not supported yet)
Quadrature
Cim.quadpts — TypequadptsQuadrature points of the trapezoidal rule on the contours.
Properties
N: the number of the quadrature nodesnodes: quadrature nodes size of N x 2nodes_prime: derivative of the parametrization size of N x 2
Cim.get_quadpts — Functionget_quadpts(ctr::ellipse, num_quadpts::Int64)
get_quadpts(ctr::circle, num_quadpts::Int64)Get the quadrature points on the contour (ellipse or circle) ctr. Here we use the composite trapezoidal rule.
Arguments
ctr: the contour that we discretizenum_quadpts: the number of the quadrature nodes
Nonlinear eigenvalue problems
Cim.Qep — TypeQep{T}Construct quadratic eigenvlaue problems
$(\mathbf{A}_{0} + \alpha \mathbf{A}_{1} + \alpha^2 \mathbf{A}_{2}) \mathbf{u} = 0.$
Fields
A₀: the matrix in the zero order termA₁: the matrix in the first order termA₂: the matrix in the second order term
Contour integral method
Cim.cim — Functioncim(ctr::AbstractContour, nep::Function, d, l::Int64; n=50, tol=1e-12)Contour integral method to calculate the eigenvalues inside the contour ctr
Arugments
ctr: the contournep: the nonlinear eigenvalue problemd: the scale of thenepl: the number of columns of random matrixn: the number of the quadrature points (here we use the trapezoid rule)tol: tolerance to determine the number of nonzero singular values
Reference
- Wolf-Jurgen Beyn, An integral method for solving NEPs, Linear Algebra Appl., 2012.
cim(ctr::AbstractContour, nep::Qep, d::Int64, l::Int64; n=50, tol=1e-12)Use the contour integral method to solve quadratic eigenvalue problems.
Cim.hcim — Functionhcim(pts::quadpts, NEP::Function, d::Int64, l::Int64, r::Int64, pbar::Int64)Contour integral method with high-order moments
Arguments
ctr: the contournep: the nonlinear eigenvalue problemd: the scale of the nonlinear eigenvalue problemnepr, l: size of the probing matricespbar: the number of the moments (for p = 0, ..., pbar)
Reference
- Stefan Guttel, Francoise Tisseur, The NEP, Acta Numerica, 2017.
Utils
Cim.is_inside — Functionis_inside(λ, ctr::ellipse)
is_inside(λ, ctr::circle)Check if the eigenvalue λ is in the contour ctr to avoid spurious eigenvalues.
Cim.print_vec — Functionprint_vec(vec; precision::Int=6)Print the vector vec to the REPL.